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We present a theoretical model for calculating the thermodynamic properties of
liquid C60 by means of an improved equation of state (EOS), in which the particles
interact via pairwise interaction composed of hard-core plus suitable linear
combinations of three Yukawa functions. The proposed EOS provides simple
analytical expressions for Helmholtz free energy and pressure, which are the basic
ingredients to compute the liquid–vapour coexistence curve of C60 as well as all
other thermodynamic properties for the bulk liquid and vapour phases. The
comparisons with computer simulation results, based on Girifalco potential,
suggest the importance of treating the attractive tail of the potential accurately. It is
to be noted that the obtained results of the thermodynamic properties along the
binodal curve of C60 exhibit interesting features; in particular, the vapour phase
shows abnormal behaviour of its isothermal compressibility and configurational
heat capacity. The estimated critical parameters Tc¼ 2008.8K, �c¼ 0.50 nm�3 and
Pc¼ 54.8 bars are in good agreement with NVT-Monte Carlo simulation
predictions. The critical parameters of C60 are compared with those of liquid
metals, non-metals and some hydrocarbons.

Keywords: carbon fullerene C60; thermodynamic properties of C60; equation of
state of C60; liquid–vapour coexistence of C60; C60 pair potential

1. Introduction

Many carbon fullerenes CN� 60 have been synthesised recently, which have shown novel
properties and potential applications [1]. The high temperature thermodynamic and
structural properties of liquid C60 is still of considerable interest from a technological point
of view [2]. Several computer simulations [3–6] suggested that the stable liquid phase can
only exist in a narrow temperature range (�100K).

Theoretical investigations based on density functional theory (DFT) and structure
theory have been carried out on C60 fluid during the last two decades; for example, two
advanced (DFT) approximations: the simplified perturbation weighted density approxi-
mation [7] and the generalised modified weighted density approximation [5,8]. Both
approaches have predicted the existence of a liquid phase of C60 but in a very narrow range
of temperature (520K), with TC¼ 1960K. The narrow range of the liquid phase was
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ascribed [8] to the well-known defect of the modified weighted density approximation,

which is due to the shortcoming of the reference system as well as the hard sphere (HS)

equation of state (EOS) used. On the other hand, highly accurate structure theories of

fluids, such as the modified hypernetted-chain (MHNC) theory [9] can be employed in the

determination of the C60 phase diagram. The MHNC theory confirmed the existence of a
C60 liquid phase but with a wider temperature range, 1600–1920K, for the estimated triple

point and critical point of liquid–vapour equilibrium (LVE), respectively (for more details

we refer the reader to Bahaa Khedr et al. [10]).
Quite recently, theories based on rather sophisticated concepts have been proposed:

the hierarchical reference theory (HRT), introduced by Parola and Reatto [11] and the

self-consistent Ornstein–Zernike approximation (SCOZA) proposed by Stell and Haye

(see, e.g. [12,13]).
The HRT merges ideas of renormalisation group theory with liquid state theory, while

the SCOZA starts from the generalised mean spherical approximation enforcing

consistency between different thermodynamic routes. The series mean spherical approx-

imation was originally set by Henderson et al. [14], reformulated and tested by Duh and

Mier-Y-Terán [15]. Most of the work done on C60 has led initially to rather controversial

results of the position of the critical point on the phase diagram of model fullerene C60.

The question whether the liquid phase of fullerenes exists or not is certainly not only of
academic but also of technological interest, since fullerenes can be used as lubricants

(summarised in Bahaa Khedr et al. [10] and Abramo et al. [16]).
There are at least five different interfullerene pair potentially proposed for C60.

All potential models have the same features of extremely hard core and extremely narrow

and deep attractive well. These potentials can be classified into three main categories

according to symmetry and rigidity assumptions, as follows. (i) The well-known Girifalco

potential, VGR (r) [17],

VGRðrÞ ¼ �
1

sðs� 1Þ9
þ

1

sðsþ 1Þ9
�

2

s10

� �
� �

1

sðs� 1Þ3
þ

1

sðsþ 1Þ3
�

2

s 4

� �
, ð1Þ

where s¼ r/d, with d¼ 7.1Å, � ¼ 13:595� 10�24 J and � ¼ 7:494� 10�21 J.
Double Yukawa potential [10,18] and ab initio potential of Pacheco and Prates [19] were

derived, taking into account the spherical symmetry and rigidity of C60 molecules. (ii) The

atomistic potential proposed by Abramo et al. [20], in which the spatial distribution of

carbon atoms within the C60 molecule is directly taken into account by fitting a set of

adjustable parameters to experimental spectroscopic data. The ab initio potential also

assumes the symmetry and rigidity of C60 molecules. (iii) The size dependent potential was
introduced for the first time by Broughton et al. [21]: i.e. the non-rigidity assumption, which

was introduced via two main parameters, the molecular radius and the softening parameter.

These two parameters are considered dynamical variables to fit the empirical breathing

frequency mode at low temperatures. It should be mentioned here that all analytical and

computer simulations work based on potentials of categories (i) and (ii), confirming the

existence of the stable liquid phase, while molecular dynamic simulations [21] that were

based on non-rigidity assumption showed meta-stable liquid phase. No doubt the
non-rigidity of the molecules had an effect on the characteristics of the liquid phase, but

one should be cautious with this model because of its limitations. The recent predictions of

accurate computer simulations by Hasegawa and Ohno [22] and by Costa et al. [23] testified
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that the spherical potential models of categories (i) and (ii) possess a stable liquid phase,

which is confined in a rather narrow temperature range.
The second part of this article is devoted to our model potential for C60–C60

interaction, for which we suggest a linear combination of three Yukawa functions.

In Section 3, we provide explicit expressions for the EOS and some thermodynamic

functions of interest. The rest of this work focuses on calculating the LVE curve of C60 and

discussing the behaviour of important thermodynamic functions along the LVE line,

followed with brief conclusions in Section 5.

2. Model potential

The Girifalco potential, Equation (1), is considered the most successful pair interaction for

C60 molecules as it has been used in almost all reported computer simulations on C60 fluid.

It has one disadvantage of being analytically impossible to implement within perturbation

theory. Therefore, we consider the three Yukawa functions of potential V3YK(r):

V3YKðrÞ ¼
"0
x

E1e
��1ðx�1Þ � E2e

��
2
ðx�1Þ � E3e

��3ðx�1Þ
� �

, ð2Þ

where x¼ r/�0, with �0 being the position of the zero potential and "0 the value of the

potential minimum position rm. The two potential functions, VGRðrÞ and V3YKðrÞ, can be

made identical by fitting five points, with reasonable accuracy, inside and outside the

attractive bucket, namely,

V3YKðr ¼ �0Þ ¼ VGRðr ¼ �0Þ ¼ 0, ð3Þ

V3YKðr ¼ rmÞ ¼ VGRðr ¼ rmÞ ¼ �"0, ð4Þ

V3YKðr1Þ ¼ VGRðr1Þ ¼ þ"0, ð5Þ

V3YKðr2Þ ¼ VGRðr2Þ ¼ �0:5"0, ð6Þ

V3YKðr3Þ ¼ VGRðr3Þ ¼ �0:01"0, ð7Þ

where r1 5 �0 5 rm 5 r2 5 r3,

together with the condition
@V3YKðrÞ

@r

����
r¼rm

¼ 0: ð8Þ

Equation (3) automatically holds for both potentials and leads to the relation E3 ¼ E1 � E2.

Equations (4) and (8) explicitly determine E1 and E2 in terms of �1, �2 and �3. Substituting
the obtained expressions of E1 and E2 into Equations (5)–(7) facilitates three non-linear

equations of �1, �2 and �3, which can be solved numerically by iteration procedure. Table 1

provides the fitting points and the estimated parameters obtained.
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The closest fit of V3YKðrÞ and VGRðrÞ is shown in Figure 1. From a statistical mechanics

point of view, the two potentials are equivalent if they reproduce the same second virial

coefficient B2ðT Þ,

B2 Tð Þ ¼ 2�

Z 1
0

1� e��V3YK rð Þ
� �

r2dr: ð9Þ

Here � ¼ ðkBT Þ
�1
�B2ðT Þ for both V3YKðrÞ and VGRðrÞ are presented in Figure 2 by

comparing with the molecular dynamic simulation results of Broughton et al. [21]. The

comparison in Figure 2 shows a close agreement with computer simulation results, which

supports the quality of 3YK model potential. Figure 2 also shows that V3YKðrÞ and VGRðrÞ

1.0 1.2 1.4 1.6 1.8 2.0

–1

0

1

X

V
(x

) 
/ 

e 0

Figure 1. The reduced pair potential of C60, the Girifalco potential VGF(r), [17] (dashed line) and the
three Yukawa potential V3YKðrÞ, Equation (2) (solid line), with x ¼ r=��. The C60 range and energy
parameters are �0 ¼ 9:5929Å and "0 ¼ 3218:538 kB.

Table 1. The 3YK potential parameters for C60.

�0Å r1/�0 rm/�0 r2/�0 r3/�0

9.5929 0.9880 1.0483 1.1620 1.9199

"0/kB E1 E2 �1 �2 �3

3218.538 1.7458 1.6077 45.1889 7.4129 2.1648
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are predicting precisely the same second virial coefficient over the whole temperature range

of liquid and vapour states.

3. Equation of state

We consider a system of N molecules in volume V, with number density � ¼ N=V and

temperature T. The molecules are interacting via hard-core plus 3YK potential

VHC3YKðrÞ ¼
1 r5 �

V3YKðrÞ r � �:

�
ð10Þ

We adopt the perturbation scheme [24] to such potential splitting, in which the reference

system is chosen to be the HS fluid, and V3YKðrÞ is considered as perturbation potential.

Here, � is the effective HS diameter. Accordingly, the Helmholtz free energy, F, per

particle of the system is the sum of the free energy of the reference system, FHS, plus the

contribution from attractive potential tail, Ft. This translates into

Fð�,T Þ ¼ FHSð y,T Þ þ Ftð y,T Þ, ð11Þ

where y ¼ �
6 ��

3 is the packing fraction. Similarly, the pressure, P, of the fluid is also a sum

of the HS reference system and perturbation contributions, namely

Pð�,T Þ ¼ PHSð y,T Þ þ Ptð y,T Þ: ð12Þ
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Figure 2. The second virial coefficient of 3YK potential (solid line) calculated via Equation (9)
compared with the computer simulation results [21] (solid circles) and with the results of the
Girifalco potential [17] (solid triangles).
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Regarding the choice of the HS reference system formalism, one can use the popular

Carnahan Starling formalism [25], but we choose a suitable combination of usual ideal gas

contribution [26] to free energy, Fid �;Tð Þ; plus the scaled particle theory entropy of hard

spheres due to Baus and Colot [27], which gives the excess HS Helmholtz free energy,

FXS
HS y;Tð Þ, namely

FHSð y,T Þ ¼ Fidð�,T Þ þ FXS
HSð y,T Þ, ð13Þ

�Fidð�,T Þ

N
¼ lnð�Þ �

3

2
lnðT Þ � 1�

3

2
ln

2�mkB
h2

� �
, ð14Þ

�FXS
HSð y,T Þ

N
¼ ðaþ 3b� 1Þ ln ð1� yÞ þ

ð6þ 2aþ 6bÞ y� ð3þ 3aþ 9bÞ y2 þ 2by3

2ð1� yÞ2
, ð15Þ

and the corresponding HS pressure

�PHS �;Tð Þ

�
¼

1þ yþ y2 � ay3 � by4

ð1� yÞ3
, ð16Þ

where m and h are the molecular mass and Planck’s constant, respectively. Baus and Colot

[27] recommended the scaling parameters, a ¼ b ¼ 3=2, which provides the most accurate

EOS for HS fluids comparable to several other approximations of the HS radial

distribution function, gHSðr, yÞ, within the framework of analytical solution of the O–Z

integral equation. The perturbation contribution to the Helmholtz free energy is simply

�Ftð y,T Þ

N
¼ 12y

Z 1
1

x2gHSðx, yÞ�VHC3YKðxÞdx: ð17Þ

Here, x ¼ r=�. The use of the HC3YK potential, Equation (17), further facilitates

analytical expression for Ft by introducing the definition of the Laplace transform of

xgHSðx, yÞ, defined as,

Gð�, yÞ ¼

Z 1
0

xgHSðx, yÞe
��xdx: ð18Þ

One can, conveniently, introduce the reduced quantities �� ¼ �
�0
, �� ¼ ��� and

T� ¼ ð�"0Þ
�1. Then Equation (17) reduces to

�Ftð y,T Þ

N
¼

12y

T�
E1e

�1Gð��1, yÞ � E2e
�2Gð��2, yÞ � E3e

�3Gð��3, yÞ
� �

: ð19Þ

The detailed expression of Gð�, yÞ can be deduced from Duh and Mier-Y-Terán [15]

and Henderson et al. [14] as

Gð�, yÞ ¼
e��

24y

X5
n¼1

Vnð�, yÞ

nðT�Þn�1
, ð20Þ

where Vnð�, yÞ are the series expansion coefficients whose explicit expressions can be found

in Duh and Mier-Y-Terán [15]. Accordingly, the corresponding contribution to pressure
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due to perturbation potential can readily be evaluated from Ft via simple derivative
�Pt

� ¼ y @�Ft

@y

� 	
T

�Ptð y,T Þ

�
¼ �Ftð y,T Þ þ

12y2

T�
E1e

�1G0ð��1, yÞ � E2e
�2G0ð��2, yÞ � E3e

�3G0ð��3, yÞ
� �

, ð21Þ

where G0ð��, yÞ denotes the first derivative of G(�*, y) with respect to the packing fraction,
Y. We carried out quite an involved analytical derivative calculation of Gð��, yÞ but the
final expressions are quite lengthy to accommodate in the present article. Finally, one can
readily derive an analytical expression for the chemical potential, �, via the standard
thermodynamic relations

��

N
¼
�F

N
þ
�P

�
: ð22Þ

The remaining parameter that needs to be determined for the present EOS is the
effective HS diameter, �. It is worth noting that the definition of � is necessarily tied to the
use of perturbation theory, and it can be interpreted more generally as the important link
between the reference system and the effect of the attractive forces in the fluid modified by
a realistic pair interaction [28,29]. In fact there exists several criteria for the choice of �.
Here, we consider two different approaches, for comparison. First, the variational theory
of classical fluid [2,26], in which the Helmholtz free energy, F, of the system is an upper
bound of the sum of the free energy of reference system (normally, the HS fluid) plus the
contribution from attractive potential. Namely,

Fð�,T Þ 	 FHSð y,T Þ þ Ftð y,T Þ: ð23Þ

For clarity, Equation (23) requires the minimisation of the right-hand side with respect to
�, at fixed density and temperature, i.e. @Fð y,T Þ@� j�,T ¼ 0. This optimal approximation for the
free energy has been used successfully as part of the pseudopotential theory of liquid
metals and is often called the Gibbs–Bogoliubov (GB) variational method [2,26] and was
also successfully applied to classical non-metallic fluids [10,29]. The second approach is
due to the Barker–Henderson (BH) perturbation theory, in which � (T) is calculated via
simple numerical integration

�BH Tð Þ ¼ �0

Z 1

0

1� e��V3YK xð Þ
� �

dx: ð24Þ

Here, x ¼ r=�0. It is worth mentioning that the well-known Weeks–Chandler–
Andersen (WCA) perturbation scheme [24] may provide relatively more accurate effective
HS diameters than both GB and BH prescriptions. The superiority of the WCA method
has been demonstrated, in particular for the VGRðrÞmodel potential by Costa et al. [30] and
Ben-Amotz and Stell [31]. The major problem for applying WCA with the present EOS lies
in the difficulty of getting a simple analytical expression of g(r) from the available Laplace
transform Gð�, yÞ. In practice, applying BH or WCA to the Girifalco type potential may
not show dramatic effect to the phase diagram due to the extremely short range between
the minimum and zero position of the potential, which is clearly illustrated in Table 1:
rm � �0 ¼ 0:0483�0. On the other hand, the Lennard–Jones (LJ) potential possesses a
much wider range: rm � �0 ¼ 0:1225�0. This may explain the importance of WCA for LJ
fluids. Moreover, the GB method has the advantage, as it guarantees the thermodynamic
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stability of the system via the minimisation of the free energy at each thermodynamic state
of T and � with respect to the entropy parameter, �.

4. Thermodynamic properties of C60 fluid

In order to locate the L–V coexistence region in the phase diagram, one has to observe the
van der Waals loops in the P� � or �� � isotherms. A typical plot of �ð�,T Þ isotherms is
presented in Figure 3. It shows pronounced van der Waals loops for isotherms, T5Tc,
while the critical isotherm shows a relatively flat inflection point and so extreme points for
all isotherms T4Tc. Next, we turn to the calculation of the L–V binodal line; first of all,
we target a particular �� � isotherm that exhibits van der Waals loop and solves the non-
linear equation,

�ð�Þ � � ¼ 0, ð25Þ

for any arbitrary chemical potential �. The expected three routes are labelled �v for the
vapour density, �L for the liquid density and �m for the interfacial state. The second step is
to apply the Maxwell equal-area construction rule [32] for the phase equilibriumZ �m

�V

ð�ð�Þ � �Þd� ¼�

Z �L

�m

ð�ð�Þ � �Þd�: ð26Þ

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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Figure 3. The chemical potential isotherms versus number density of C60. The dotted curve refers to
the critical isotherm.
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Equation (26) only holds for a unique set ð�, �v, �LÞ; which indicates the L–V coexistence

densities and chemical potential, such that �ð�VÞ ¼ �ð�mÞ ¼ �ð�LÞ ¼ �. Thirdly, by

considering several �� � isotherms and applying the Maxwell equal-area rule one can

generate the whole binodal curve for the fluid of interest. We carried out calculations of

two different binodal curves, one using the GB variational method, Equation (23), and the

other using the BH formula, Equation (24), for effective HS diameters. A typical L–V

coexistence curve for C60 is plotted in Figure 4, together with the results of Monte Carlo

simulations based on an NVT ensemble [22]. It is clear that the binodal curve based on GB

prescription better fits the computer simulations results than that based on the BH

method. In general, the BH method is good only at higher temperatures. The NVT-Monte

Carlo simulation technique is considered the most accurate method for the LVE

calculations as it consistently takes care of the absolute free energy of the fluid phase [22].

Moreover, this energy route-based computer simulation is computationally more

demanding as it yields numerically more stable results against size effect errors. The

comparison in Figure 4 is reasonable at the whole temperature range except in the near

vicinity of the critical point. Figure 5 shows the P–T representation of the phase diagram.

It appears that the coexisting pressure calculated from the present model agrees well with

the NVT-Monte Carlo simulation results at intermediate temperatures. Figure 5 clearly

illustrates that the BH prescription to the effective HS diameters largely overestimates the

0.0 0.2 0.4 0.6 0.8 1.0
1600

1700

1800

1900

2000

Density (nm–3) 

Te
m

p
e

ra
tu

re
, T

 (K
)

Figure 4. Liquid–vapour coexistence curve for C60 using HC3YK potential (solid line for �GB
Equation (23), and dashed line for �BH Equation (24)) compared with the NVT-Monte Carlo
computer simulation result [22] (solid circles). The dotted line shows the rectilinear diameters.
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pressure at the whole temperature range. The LVE critical parameters are calculated using

a standard extrapolation method [10] and are presented in Table 2. The present EOS

estimated critical parameters are compared with the NVT-Monte Carlo computer

simulation and other theoretical results [33,3]. In general, the first order perturbation

theory overestimates the critical parameters by 15%. Our estimate of the critical

parameters Tc and �c compare relatively well with the NVT-Monte Carlo simulation

results; their comparison is better than with the HRT and hybrid mean spherical

approximation theoretical results. But our critical pressure Pc is largely overestimated.

However, Pc of C60 is in the same order of magnitude with the critical pressure of Ar, Kr

and Xe and also with diatomic liquids N2, O2 and CO; also it is in relatively good

agreement with polyatomic molecular fluids CO2, CH4 and C6H6. The most important

critical parameter is the compressibility ratio, Zc ¼
Pc

�ckBTc
, as it exhibits universality for

each group of fluids. Guggenheim [34], Chapman and March [35,36] and March [37] have

extracted information on the constancy of Zc at 0.29 for rare gas elements, while for alkali

metals, Zc does not exhibit a universal fixed value, 0:06 	 Zc 	 0:22. Table 2 provides

more information on Zc for diatomic and polyatomic liquids with covalent bonds. From

Table 2, some conclusions may be drawn: (a) the coulomb interaction is crucial in

understanding the lower value of Zc in case of alkali metals; (b) the bonding effect in

diatomic fluids does not alter the universal value (Zc � 0:29), while in polyatomic liquids,

1600 1700 1800 1900 2000

10

20

30

40

P
re

ss
ur

e,
 P

 (
ba

r)

Temperature, T (K)

BH GB

Figure 5. The pressure at LVE for C60 using HC3YK potential (solid line for �GB Equation (23), and
dashed line for �BH Equation (24)) compared with the NVT-Monte Carlo computer simulation result
[22] (N¼ 600, solid circles; N¼ 1500, open triangles).
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the bonding effect is lowering this value; and (c) the quantum effect in Ne, He and H2 is
responsible for increasing Zc up to 0.33 with ascending order as the quantum effect
increases i.e. ZNe

c 5ZHe
c 5ZH2

c . However, there is no obvious explanation in the literature
on how Zc depends on the number of bonds or on the quantum effect. Owing to the fact
that C60 molecules possess extremely short ranged and strongly attractive intermolecular
potential, we expect large differences in its critical parameters comparable with those of
noble gas metals, alkali metals or transition metals, which possess soft cores and quite a
long range coulomb attractive tail. However, the comparison in Table 2 with other real
fluids is not intended to test the accuracy of the present EOS, but to show how C60 fluid
can be categorised among other systems.

The comparisons in Figures 2, 4 and 5 indicate reasonable accuracy of the present EOS
and allow an accurate investigation for the coexistence of thermodynamic properties.
Thermodynamic functions are then derived in the usual way by taking the appropriate

Table 2. Critical parameters of C60 compared with the most recent computer simulations (NVT-
Monte Carlo, NPT-Monte Carlo and GEMC) and with theoretical results (HRT and HMSA) based
on integral equation methods. Also compared with experimental data for some metals, non-metals
and organic elements.

Reference

Molecular
weight

(gmol�1)
Tc

(K)
�c

(g/cm3)
Pc

(bars) Zc

C60 Present work 720.669 2008.8 0.5985 53.05 0.379
NVT-Monte
Carlo [22]

1980 0.5325 36.6 0.301

NVT & NPT-Monte
Carlo [23]

1940 0.5025 27.0 0.240

GEMC [42] 1941 0.5025 29 0.27
HRT [33] 2138 0.5983 46.5 0.315
HMSA [3] 2050 0.6701

Li [37,43] 6.939 1615 0.3086 274.7 0.046
Na [38] 22.989 2600 0.21 280 0.142
K [38] 39.10 2200 0.19 150 0.169
Rb [38] 85.467 2100 0.35 160 0.217
Cs [38] 132.9055 2030 0.44 110 0.203
Hg [38] 200.5 1760 5.7 1520 0.365
He [44,45] 4.0036 5.188 0.0655 2.29 0.325
Ne [34] 20.18 44.8 0.4840 27.25 0.305
Ar [34,46] 39.94 150.7 0.5308 48.62 0.292
Kr [34,46] 83.7 209.4 0.9083 54.8 0.290
Xe [34,47] 131.3 289.75 1.116 58.96 0.288
H2 [48] 2.016 20.268 0.0899 1.013 0.014
N2 [34] 28.02 126.0 0.311 33.94 0.292
O2 [34] 32.0 154.3 0.430 50.346 0.292
CO [34] 28.019 133.0 0.301 34.95 0.294
CO2 [44] 44.009 304.0 0.468 73.75 0.274
CH4 [34] 16.03 190.3 0.162 46.29 0.290
H2O [49] 18.0152 647 0.3252 215.2 0.227
NH3 [49] 17.0304 406 0.2365 110.56 0.242
n-Pentane C5H12 [44] 72.15 470.0 0.233 33.73 0.267
neoPentane C5H12 [44] 72.15 434.0 0.2385 32.02 0.268
Benzene C6H6 [44] 78.11 563.0 0.2582 49.23 0.318
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derivatives of Equations (11) and (12). One can readily derive analytical expressions for the

isothermal compressibility, 	T, adiabatic compressibility, 	S, the thermal pressure

coefficient, �V, the coefficient of thermal expansion at constant pressure (expansibility),

�P, isochoric and isobaric heat capacities, CV, CP, respectively, and the total entropy, S,

via the following thermodynamic relations [38,39]:

	T ¼
1

�

@�

@P


 �
T

, ð27aÞ

	S ¼
1

�

@�

@P


 �
S

¼
KT



, ð27bÞ

�V ¼
@P

@T


 �
�

, ð28aÞ

�P ¼ �
1

�

@�

@T


 �
P

¼ 	T�V, ð28bÞ

CV ¼ �T
2 @2 F

@T2


 �
�

, ð29aÞ

CP ¼ CV þ
T

�	T
�2P ¼ CV þ

T

�
	T�

2
V, ð29bÞ

S

NkB
¼ �

@F

@T


 �
�

, ð30Þ

where the heat capacity ratio


 ¼
CP

CV
: ð31Þ

All thermodynamic functions are calculated from the present EOS along the LVE. The

compressibility, one of the important thermodynamic properties, is given by the second

derivative of the partition function, which determines the stability of the fluid and can be

used to calculate the zero frequency limit of the speed of sound, vs ¼
ffiffiffiffiffiffiffiffi



m�	T

q
. In particular,

the isothermal compressibility can be calculated from the present EOS via Equation (27a),

and can also be calculated from the cyclic relation 	T ¼ ��P=ð�
2ð@S=@�ÞT Þ, where S is the

total entropy of the system, Equation (30). This indicates the sensitivity of 	T to both

pressure and structure changes. Figure 6(a) shows the behaviour of 	T in vapour and liquid

phases. 	T is nearly zero for liquid phases far from the critical point up to �50 K below Tc,

then diverges sharply as T! Tc. Remarkably, 	T for the vapour phase shows ideal gas-

like behaviour, 	T ¼ 1=�kBT at low temperatures and reverses to a liquid-like behaviour at

T � 1902K. The adiabatic compressibility, 	S, is plotted in Figure 6(b). It is almost zero

for the liquid phase, with a slight increase as T! Tc, which indicates that the packing of

molecules in the liquid phase is almost independent of temperature. On the contrary, the

sharp decrease of the vapour phase 	S indicates the continuous packing of vapour
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molecules by increasing temperature and pressure. At critical point, K
Vapour
S ¼ K

Liquid
S ,

which means that both phases are equally packed and hence they are indistinguishable.
On the other hand, the pure chemicals can be characterised by their thermomechanical

properties, such as isochoric pressure coefficient, �V, and isobaric expansibility, �P, which
can be easily calculated from the EOS by taking the respective temperature derivatives,
Equations (28a) and (28b), respectively. The ideal gas limit �idP ¼

1
T and �idV ¼

P
T. Figure 7(a)

and (b) shows �P and �V, respectively, along the L–V coexistence curve. Figure 7(a) shows
that both vapour and liquid typically expand at the same rate, with maximum expansibility
at the near vicinity of the critical point, while Figure 7(b) illustrates the fact that the
vapour phase responds more dramatically with pressure variations for any small
temperature fluctuations than the liquid phase. In other words, the liquid phase is more
mechanically stable than the vapour phase under thermal expansion. Quite recently,
March and Angilella [40] have explored the usefulness of �V and �P together with their
interrelation to the isothermal compressibility 	T to obtain a new EOS for H2O and NH3

near the critical point, which is very important in explaining the validity of the inequality
between the shear viscosity and entropy density.

The configurational heat capacity, CV, is a purely thermodynamic property used
particularly to measure the performance of a theory, and can therefore measure
the influence of higher order terms in the perturbation expansion. Moreover, the
characteristic function CV provides an important measure of the influence of the structure
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Figure 6. (a) Temperature dependence of isothermal compressibility, 	T, Equation (27a), of C60 for
both liquid and vapour phases at equilibrium, (b) temperature dependence of the adiabatic
compressibility, 	S, Equation (27b), of C60 for both liquid and vapour phases at equilibrium.
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and forces on the state of a fluid. Figure 8(a) shows CV versus temperature. It is clear that
the vapour phase CV is much higher than that of the liquid phase, which can be interpreted
due to the influence of the higher kinetic energy of the vapour molecules. However, as
T! Tc, both phases possess equal heat capacities. The vapour phase CV shows a
maximum value at T ’ 1955K and reverses behaviour by increasing temperature. The
decrease in CV can be attributed to the clustering process that may take place due to the
increase of pressure while the vapour approaches its critical state. According to the
classical theory of critical phenomena, the constant pressure heat capacity CP strongly
diverges as T! Tc. Moreover, CP !/ provides a rather stringent critical condition for a
particular theoretical approach. Figure 8(b) shows strong divergence of CP at the near
vicinity of the critical point. However CP of the liquid phase diverges more strongly than
that of the vapour phase. The heat capacity ratio, 
 ¼ CP=CV, was explored by several
authors [36–39,41] without decisive conclusion. For most simple liquids, the g parameter
does not vary widely near the melting point and diverges sharply, as CP, near the
critical point. In addition, g also correlates with the ratio of isothermal to adiabatic
compressibilities, as in Equation (27b). A typical plot of g versus temperature is given in
Figure 8(c), which shows a relatively fixed value of g for a wide range of temperature and
a dramatic increase at the near vicinity of the critical point. Figure 9 shows the entropy of
both phases calculated via Equation (30). It shows a high degree of symmetry of liquid and
vapour structure when they expand to a less ordered state towards the critical state;
eventually, an equal entropy is achieved, indicating no structural distinction as T! Tc.
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Figure 7. (a) The coefficient of thermal expansion, �P, Equation (28b) of C60 versus temperature
along the LVE curve, (b) thermal pressure coefficient, �V, Equation (28a) of C60 versus temperature
along the LVE curve.
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Figure 8. (a) Constant volume heat capacity, CV, Equation (29a), of C60 along the LVE curve;
(b) isobaric volume heat capacity, CP, Equation (29b), of C60 along the LVE curve; (c) the heat
capacity ratio 
 ¼ CP=CV plotted against equilibrium temperature for both liquid and vapour phases
of C60.
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5. Conclusion

A new EOS for C60 is presented and employed to locate the liquid–vapour binodal curve,

and also used to calculate most thermodynamic properties of the equilibrium phases. The

new EOS is based on the first-order perturbation theory of fluids, for which the main

ingredients are (a) the HS reference system formalism taken from a recent development of

the scaling theory, (b) the HC3YK potential which is accurately designed to mimic the

original C60 interaction potential, (c) the analytical expressions of the Laplace transform

Gð�, yÞ of the radial distribution function, and (d) the Gibbs–Bogoliubov variational

approach for the effective HS diameters. The quality of the HC3YK potential as well as

the present EOS is assessed by consulting the computer simulation results of (a) the second

virial coefficient B2ðT Þ, (b) the �� T results of the binodal curve, and (c) the L–V

equilibrium pressure–temperature relation. These comparisons are satisfactory and

enabled us to proceed in investigating the behaviour of the most important

thermodynamic functions of the two phases at equilibrium state. All thermodynamic

functions of interest show the expected qualitative behaviour of the liquid phase typically,

as in the case of expanded non-conducting fluids, while for the gas phase behaviour

changes from ideal gas to cluster formation tendency at �50 K below the critical point;

however, this problem is still wide open for further investigation. The critical parameters

of C60 are compared with those of different classes of liquids.
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Figure 9. The temperature dependence of the total entropy, Equation (30), along the LVE curve.
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